Decarbonylative Cycloaddition of Phthalic Anhydrides with Allenes

Yosuke Ochi, Takuya Kurahashi,* and Seijiro Matsubara*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan

tkuraha@orgrxn.mbox.media.kyoto-u.ac.jp; matsub@orgrxn.mbox.media.kyoto-u.ac.jp

Received January 10, 2011

The decarbonylative cycloadditions of phthalic anhydrides with allenes were performed by using nickel catalyst. The asymmetric variant of the cycloaddition was also achieved by using chiral phosphine ligands to provide δ -lactones enantioselectively.

Transition-metal-catalyzed insertion reactions of an unsaturated carbon-carbon bond into a carbon-oxygen bond should be one of the most useful transformations, since the reaction forms carbon-carbon and carbon-oxygen bonds simultaneously.1,2 Herein, we report our results of a regioselective decarbonylative cycloaddition of phthalic anhydrides with allenes to provide δ -lactones (Scheme 1). The reaction represents an unprecedented insertion reaction of a carbon-carbon double bond into a carbon-oxygen bond. The strategy is also applicable for cycloaddition of thiophthalic anhydrides with allenes to give δ -thiolactones, which also represents the first example of a nickel-catalyzed

(4) For addition of $S-CO₂R$ bond to alkynes, see: Hua, R.; Takeda, H.; Onozawa, S.; Abe, Y.; Tanaka, M. J. Am. Chem. Soc. 2001, 123, 2899.

(5) For addition of $S-C(O)R$ bond to alkynes, see: (a) Sugoh, K.; Kuniyasu, H.; Sugae, T.; Ohtaka, A.; Takai, Y.; Tanaka, A.; Machino, C.; Kambe, N.; Kurosawa, H. J. Am. Chem. Soc. 2001, 123, 5108. (b) Kuniyasu, H.; Kurosawa, H. Chem.--Eur. J. 2002, 2660. (c) Hirai, T.; Kuniyasu, H.; Kambe, N. Chem. Lett. 2004, 33, 1148. (d) Hirai, T.; Kuniyasu, H.; Kambe, N. Tetrahedron. Lett. 2005, 46, 117. (e) Hirai, T.; Kuniyasu, H.; Terao, J.; Kambe, N. Synlett 2005, 1161. (f) Kuniyasu, H.; Yamashita, F.; Hirai, T.; Ye, J.-H.; Fujiwara, S.; Kambe, N. Organometallics 2006, 25, 566. (g) Yamashita, F.; Kuniyasu, H.; Terao, J.; Kambe, N. Org. Lett. 2008, 10, 101.

10.1021/ol200044y C 2011 American Chemical Society Published on Web 02/18/2011

insertion reaction of a carbon-carbon double bond into a carbon-sulfide bond. $3-8$ Asymmetric variants of both the cycloadditions were also examined by using chiral phosphine ligands.^{9,10}

We first examined the ligand effects in the decarbonylative cycloaddition of phthalic anhydride (1) with allene 2a using $Ni(cod)$ as a $Ni(0)$ precursor. The reaction was performed in refluxing acetonitrile (MeCN) for 12 h ,¹¹

LETTERS 2011 Vol. 13, No. 6 1374–1377

ORGANIC

⁽¹⁾ Kajita, Y.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2008, 130, 17226.

⁽²⁾ Ooguri, A.; Nakai, K.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2009, 131, 13194.

⁽³⁾ For reviews on addition of $S-X$ bond to carbon-carbon unsaturated bonds, see: (a) Han, L.-B.; Tanaka, M. J. Chem. Soc., Chem. Commun. 1999, 395. (b) Beletskaya, I.; Moberg, C. Chem. Rev. 1999, 99, 3435. (c) Kuniyasu, H. In Catalytic Heterofunctionalization; Togni, A., Grützmacher, H., Eds.; Wiley-VCH: Zürich, Switzerland, 2001; p 217. (d) Ogawa, A. J. Organomet. Chem. 2000, 611, 463. (e) Kondo, T.; Mitudo, T. Chem. Rev. 2000, 100, 3205.

⁽⁶⁾ For addition of $S-C(O)NR_2$ bond to alkynes, see: (a) Toyofuku, M.; Fujiwara, S.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2005, 127, 9706. (b) Kuniyasu, H.; Kato, T.; Asano, S.; Ye, J.-H.; Ohmori, T.; Morita, M.; Hiraike, H.; Fujiwara, S.; Terao, J.; Kurosawa, H.; Kambe, N. Tetrahedron Lett. 2006, 47, 1141.

⁽⁷⁾ For addition of S-CN bond to alkynes, see: Kamiya, I.; Kawakami, J.; Yano, S.; Nomoto, A.; Ogawa, A. Organometallics 2006, 25, 3562.

⁽⁸⁾ For addition of S-allyl bond to alkynes, see: Hua, R.; Takeda, H.; Onozawa, S-y.; Abe, Y.; Tanaka, M. Org. Lett. 2007, 9, 263.

⁽⁹⁾ For Ni-catalyzed cycloadditions via elimination of N_2 , see: (a) Miura, T.; Yamauchi, M.; Murakami, M. Org. Lett. **2008**, 10, 3085. (b) Yamauchi, M.; Morimoto, M.; Miura, T.; Murakami, M. J. Am. Chem. Soc. 2010, 132, 54. (c) Miura, T.; Yamauchi, M.; Kosaka, A.; Murakami, M. Angew. Chem., Int. Ed. 2010, 49, 4955. (d) Miura, T.; Morimoto, M.; Yamauchi, M.; Murakami, M. J. Org. Chem. 2010, 75, 5359.

⁽¹⁰⁾ For Pd-catalyzed cycloadditions via elimination of $CO₂$, see: (a) Shintani, R.; Murakami, M.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 12356. (b) Wang, C.; Tunge, J. A. J. Am. Chem. Soc. 2008, 130, 8118. (c) Shintani, R.; Park, S.; Shirozu, F.; Murakami, M.; Hayashi, T. J. Am. Chem. Soc. 2008, 130, 16174. (d) Shintani, R.; Park, S.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 14866. (e) Shintani, R.; Tsuji, T.; Park, S.; Hayashi, T. J. Am. Chem. Soc. 2010, 132, 7508. (f) Shintani, R.; Murakami, M.; Hayashi, T. Org. Lett. 2009, 11, 457. (g) Shintani, R.; Hayashi, S.; Murakami, M.; Takeda, M.; Hayashi, T. Org. Lett. 2009, 11, 3754.

⁽¹¹⁾ The reaction did not proceed in a sealed vessel. Refluxing of reaction solvent is probably essential to promote the exhaust of CO from the reaction system efficiently.

Scheme 1. Nickel-Catalyzed Decarbonylative Cycloaddition of a Phthalic Anhydride with an Allene

Table 1. Optimization of Reaction Conditions for the Nickel-Catalyzed Decarbonylative Cycloaddition of a Phthalic Anhydride 1 with an Allene $2a^a$

^a Reactions were carried out using Ni(cod)₂ (10 mol %), ligand, 1 (0.5) mmol), and 2 in 1 mL of refluxing solvent for 12 h. b Isolated yields.</sup>

and the results are summarized in Table 1. Among the ligands examined, PMe₂Ph gave the best result to afford δ-lactone 3a in 52% yield regioselectively (entry 2). Trace or lower amounts of 3a were obtained in the cases of using PPh_3 , PCy_3 , and bpy in place of PMe_2Ph (entries 4-9). It was found that the reaction of 1 with 1.5 equiv of 2a gave the highest yield of 3a in 64% yield (entry 7). In other solvents such as 1,4-dioxane, pyridine, and toluene, yields were even lower (entries $10-12$). On addition of $ZnCl₂$ (20 mol $\%$), the cycloaddition was retarded.¹

We next investigated the scope of the reaction using various allenes, and the results are summarized in Scheme 2. The reaction of cyclohexyl-substituted allene 2b with 1 afforded 3b in 45% yield, while phenyl-substituted allene 2c failed to participate in the reaction and recovered unchanged. This feature may suggest that an electron-rich double bond contributes significantly toward the reactivity on the cycloaddition. Indeed, the reaction of gem-dimethylsubstituted allene 2d reacted with 1 to provide a single product 3d via regioselective insertion of the internal carbon-carbon double bond of 2d. The cycloaddition of a cyclic allene 2e gave 3e in excellent yield, while the reaction of 1,3-dipropyl-substituted allene 2f gave cycloadduct 3f as a 1/1 mixture of regioisomers in 83% yield.

Scheme 2. Scope of the Nickel-Catalyzed Decarbonylative Cycloadditions of Phthalic Anhydride 1 with Allenes 2

These results prompted us to investigate an asymmetric decarbonylative cycloaddition of phthalic anhydride 1 with alkene $2a$ by using a chiral ligand in place of $PMe₂Ph$ (Table 2). The reactions with chiral bidentate phosphine ligands, such as (S, S) -chiraphos¹² or (R, R) -Me-duphos,¹³ gave small amounts of cycloadduct 3a but without enantioselectivity (entries $1-2$). Optically active 3a was obtained in 55% yield when (R) -binap was used as a ligand.¹⁴ The reaction with (R) -quinap did not afford any cycloadduct at all,¹⁵ while bidentate P-N ligands, such as (S) -iPrfox¹⁶ or (S, S) -*i*Pr-foxap,¹⁷ gave improved results in terms of both yield and selectivity (entries 5 and 8). The yield and the enantioselectivity were influenced by the reaction medium employed. The highest yield and enantioselectivity were observed when pyridine was used as the reaction solvent, and 3a was obtained in 73% yield with 59% ee (entry12). With a shorter reaction time (4 h), 3a was obtained in 56% yield with 58% ee. Phthalic anhydride 1 also reacted with 2b to provide 3b in 64% yield with 81% ee (entry 14).

In addition to phthalic anhydride, thiophthalic anhydride 4 also participated in the reaction with allenes 2 (Scheme 3). Cycloaddition of thiophthalic anhydride 4 with 1.5 equiv of allene $2a$ in the presence of Ni/PMe₂Ph catalysis provided δ -thiolactone 5a in 93% isolated yield. The use of a different ligand, such as $PMe₃$, $PPh₃$, or $PCv₃$, in toluene gave inferior results. The reaction of cyclohexylsubstituted allene 2b with 4 gave the correspondingly substituted cycloadduct 5b in 87% yield with a regioselectivity of 10/1. Phenyl-substituted allene 2c also participated in the reaction to give 5c in 87% yield with a 5/1 ratio of regisoisomers. gem-Dimethyl-substituted allene 2d reacted

⁽¹²⁾ Fryzuk, M. D.; Bosnich, B. J. Am. Chem. Soc. 1977, 99, 6262.

⁽¹³⁾ Burk, M. J. J. Am. Chem. Soc. 1991, 113, 8518.

⁽¹⁴⁾ Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345.

⁽¹⁵⁾ Alcock, N. W.; Brown, J. M.; Hulmes, D. I. Tetrahedron: Asymmetry 1993, 4, 743.

^{(16) (}a) Loiseleur, O.; Meier, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1996, 35, 200. (b) Lightfoot, A.; Schnider, P.; Pfaltz, A. Angew. Chem., Int. Ed. 1998, 37, 2897.

⁽¹⁷⁾ Miyake, Y.; Nishibayashi, Y.; Uemura, S. Synlett 2008, 1747.

Table 2. Nickel-Catalyzed Asymmetric Decarbonylative Cycloaddition of Phthalic Anhydrides 1 with Allenes 2^a

^{*a*} Reactions were carried out using Ni(cod)₂ (10 mol %), ligand, 1 (0.5 mmol), and 2 in 1 mL of refluxing solvent for 12 h . b Isolated yields. c Reaction time: 4 h.

with 4 to furnish a single product 5d. The reaction was also compatible with a cyclic allene 2e to give 5e in 78% yield.

The cycloaddition was also extended to asymmetric reactions. The reaction of 4 with 2a affords 5a in 99% yield with 82% ee when (S, S) -iPr-foxap was employed as a chiral phosphine ligand (Scheme 4). Only minor solvent effects on enantioselectivity and yield were observed. Under the same reaction conditions, monosubstituted allene such as 2b and 2c reacted with 4 to afford the correspondingly substituted optically active cycloadducts 5b and 5c in excellent yields.

Furthermore, the enantio- and regioselective cycloaddition of phthalimide with allene was briefly examined (Scheme 5).^{18,19} The reaction of N-pyrrol-substituted

Scheme 3. Scope of the Nickel-Catalyzed Decarbonylative Cycloaddition of Thiophthalic Anhydride 4 with Allenes 2

phthalimide 6 with allene 2a for 12 h afforded cycloadduct 7a in 48% yield with 82% ee. Monosubstituted allene 2b also reacted with 6 to afford the correspondingly substituted optically active cycloadducts 7b and in 40% yield (82% ee), while phenyl-substituted allene 2c did not participate in the reaction.

A plausible reaction pathway to account for the formation of cycloadducts 3, 5, and 7 based on the observed results is outlined in Scheme 6. The catalytic cycle of the

^{(18) (}a) Kajita, Y.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2008, 130, 6058. (b) Fujiwara, K.; Kurahashi, T.; Matsubara, S. Org. Lett. 2010, 12, 4548.

⁽¹⁹⁾ For oxidative addition of C-N bond to Ni, see: (a) Chan, Y. W.; Renner, M. W.; Balch, A. L. Organometallics 1983, 2, 1888. (b) Lin, B. L.; Clough, C. R.; Hillhouse, G. L. J. Am. Chem. Soc. 2002, 124, 2890. (c) Ozerov, O. V.; Guo, C.; Fan, L.; Foxman, B. M. Organometallics 2004, 23, 5573.

^{(20) (}a) O'Brien, E. M.; Bercot, E. A.; Rovis, T. J. Am. Chem. Soc. 2003, 125, 10498. (b) Johnson, J. B.; Bercot, E. A.; Rowley, J. M.; Coates, G. W.; Rovis, T. J. Am. Chem. Soc. 2007, 129, 2718.

^{(21) (}a) Yoshino, Y.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2009, 131, 7494. (b) Yoshino, Y.; Kurahashi, T.; Matsubara, S. Chem. Lett. 2010, 39, 896.

^{(22) (}a) Trost, B. M.; Chen, F. Tetrahedron Lett. 1971, 12, 2603. (b) Sano, K.; Yamamoto, T.; Yamamoto, A. Chem. Lett. 1984, 941. (c) Sano, K.; Yamamoto, T.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1984, 57, 2741. (d) Yamamoto, T.; Sano, K.; Yamamoto, A. J. Am. Chem. Soc. 1987, 109, 1092. (e) Fischer, R.; Walther, D.; Kempe, R.; Sieler, J.; Schönecker, B. J. Organomet. Chem. 1993, 447, 131.

Scheme 5. Nickel-Catalyzed Asymmetric Decarbonylative Cycloaddition of Phthalimide 6 with Allenes 2

present reactions may consist of oxidative addition of a CO-X bond to a $\text{Ni}(0)$ complex.^{1,5,19-22} Subsequent decarbonylation and coordination of allene 2 take place to give nickel(II) intermediate 10. The allene would then insert into the C-Ni bond to give the more stable acyclic π allylnickel intermediate 11.^{23,24} Nucleophilic addition of a heteroatom onto π -allylnickel at the more substituted carbon takes place to afford cycloadducts and regenerate the starting Ni(0) complex.

In summary, we have developed a decarbonylative cycloaddition of phthalic anhydride with allene to give δ-lactone in a single step. The reaction represents an unprecedented insertion reaction of a carbon-carbon

(23) For migratory insertion of allenes into oxanickelacycles, see: Hoberg, H.; Peres, Y.; Krüger, C.; Tsay, Y.-H. Angew. Chem., Int. Ed. 1987, 26, 771.

(24) It was found that racemic cycloadduct 3a was recovered unchanged when it was subjected to the $Ni/(S,S)-iPr$ -foxap catalyst (1). This result may indicate that a reductive elimination step is an irreversible process. Meanwhile, the reaction of phthalic anhydride 1 with chiral allene 2f (95% ee) in the presence of the $Ni/PMe₂Ph$ catalyst gave racemic cycloadducts 3f (2). This may clearly suggest that the reaction proceeds via π -allylnickel 11, which is a key intermediate for chiral induction.

Scheme 6. Plausible Reaction Pathway for the Nickel-Catalyzed Decarbonylative Cycloadditions

double bond into a carbon-oxygen bond. We also demonstrated for the first time that δ -thiolactone can be prepared via decarbonylative cycloaddition of thiophthalic anhydride with allene.²⁵ Moreover, asymmetric insertion reactions of a carbon-carbon double bond into a carbon-oxygen bond and into a carbon-sulfide bond were also successfully demonstrated with chiral phosphine ligands to provide δ-lactones and δ-thiolactones.

Acknowledgment. This work was supported by Grantsin-Aid from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. T.K. also acknowledges the Novartis Foundation, Asahi Glass Foundation, Kansai Research Foundation, and Mizuho Foundation for the Promotion of Sciences.

Supporting Information Available. Experimental procedures including spectroscopic and analytical data of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽²⁵⁾ Functionalized δ -lactones are ubiquitous in a variety of biologically active natural products. For recent examples, see: (a) Munro, T. A.; Rizzacasa, M. A.; Roth, B. L.; Toth, B. A.; Yan, F. J. Med. Chem. 2005, 48, 345. (b) Nicotra, V. E.; Gil, R. R.; Oberti, J. C.; Burton, G. J. Nat. Prod. 2007, 70, 808. (c) Thompson, C. M.; Quinn, C. A.; Hergenrothe, P. J. J. Med. Chem. 2009, 52, 117. (d) Meragelman, T. L.; Scudiero, D. A.; Davis, R. E.; Staudt, L. M.; McCloud, T. G.; Cardellina, J. H., II; Shoemaker, R. H. J. Nat. Prod. 2009, 72, 336. (e) Haritakun, R.; Sappan, M.; Suvannakad, R.; Tasanathai, K.; Isaka, M. J. Nat. Prod. 2010, 73, 75.